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Highlights  Abstract  

▪ A maintenance policy with two inspection 

intervals and a preventive-replacement 

threshold. 

▪ A fixed change point degradation threshold is 

adopted in the two-phase Wiener process. 

▪ A reasonable degradation failure time 

distribution is given. 

▪ The process is explained and the feasibility is 

proved through a numerical example. 

▪ The impact of the cost parameters is analyzed 

through sensitivity analysis. 

 This paper proposes a condition-based maintenance policy for the two-

phase Wiener degradation process components. The main contribution 

of this article is to provide the time distribution of degradation failures 

for the two-phase Wiener process degradation component, as well as the 

modeling and solving methods for two-phase maintenance. The two-

phase maintenance policy includes two-phase inspection and preventive 

replacement maintenance operations. The established optimization 

maintenance policy model aims to minimize long-term operation costs. 

The specific cost calculation equation and the solution method of the 

maintenance model are given. The feasibility of the maintenance policy 

model is verified using the two-phase degradation data of the Liquid 

Coupling Devices. The Particle swarm optimization algorithm can stably 

solve the described problem, and the results show that the two-phase 

maintenance policy can be more economical and improve components 

availability. After that, we also analyzed the impact of the cost 

parameters on the maintenance policy through sensitivity analysis.  
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1. Introduction 

Generally, machines and components go through a series of 

degradation states before eventual failure occurs. Inspecting 

machine degradation and repairing it timely could reduce 

maintenance costs, operational downtime, and safety hazards 

[21]. In the research, the characteristic quantity can be selected 

to reflect the degradation of equipment [11]. Over time, the 

degradation will gradually increase, and the equipment will fail 

after reaching a certain level. By analyzing the degradation 

mechanism and the degradation data, mathematical models can 

be built to obtain the time distribution of degradation failures 

[14]. Some degradation process models are established by 

stochastic processes such as the Wiener or Gamma process, and 

the failure time distribution can be derived according to the 

given failure threshold [8]. For the Wiener process, the failure 

time distribution follows the inverse Gaussian (IG) distribution 

[5]. For the Gamma process, some researchers also give its 
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failure time distribution [22]. Both stochastic processes can 

model linear and nonlinear models, the difference being that the 

Gamma process is non-decreasing, while the Wiener process 

can cope with the situation that the amount of degradation 

fluctuates over time. Another type of degradation model is the 

general path model [7]. The model assumes that the degradation 

path is a certain path affected by random effects. After the 

random parameters are determined, the degradation will 

conform to a fixed route, and the fault occurrence time will also 

become a fixed value, so the degradation path model cannot 

model the time uncertainty. However, in practical situations, it 

is difficult to fully grasp the randomness of the environment or 

the equipment itself. It is more reasonable to use stochastic 

process modeling to take this uncertainty into account. At the 

same time, random processes such as the Wiener process or 

Gamma process have good mathematical properties, which can 

better combine prior distribution and express the influence of 

the environment through covariates [4].  

But sometimes the degradation phenomenon cannot be 

expressed using a single model. In the study, it is found that 

some devices showed the characteristics of two-phase 

degradation during the degradation process. After the 

degradation reaches a certain turning threshold, the degradation 

mechanism or form changes. For some equipment, the 

degradation may be very fast at the beginning, and degradation 

slows down after the turning threshold is reached. It may also 

start slowly, but after the transition threshold, the degradation 

accumulates quickly. The degradation path model became an 

option when describing the two-phase degradation situation. 

While research on the two-phase degradation process in recent 

years has focused on stochastic processes. Some scholars use 

the same degradation model for the two-phase degradation, such 

as the Wiener-Wiener model proposed by Yan et al [30]. and the 

Gamma-Gamma model proposed by Fouladirad and Grall [6]. 

Some scholars also use different stochastic processes when 

modeling the two-phase degradation process, such as the 

Gamma-Wiener model proposed by WANG et al [26]. The 

research objects include the two-phase degradation process of 

the Liquid Coupling Devices (LCD) [9], Lithium-ion batteries 

[25], or bearings [12,23], and the multi-phase degradation 

process of the high-voltage-pulse capacitor [5]. Research 

content includes parameter estimation and reliability or 

remaining life prediction [13], also the accuracy of small sample 

modeling [27]. 

In general, the two-phase degradation process has attracted 

the attention of researchers, and two stochastic process models, 

the Gamma process and the Wiener process are mainly used in 

modeling.  

This article attempts to find suitable maintenance policies 

for the two-phase degradation phenomenon, as the changes in 

two-stage degradation may affect the arrangement of 

maintenance policies in different phases. The utilization of 

preventive maintenance can reduce the occurrence of 

unexpected failures and reduce losses [20]. Preventive 

maintenance can be roughly divided into time-based 

maintenance (TBM) and condition-based maintenance (CBM)  

[1]. Condition-based maintenance can incorporate the inspected 

equipment status data into the judgment basis for maintenance 

decisions so that the decisions made are more flexible and 

accurate. Some research examples show that adopting 

condition-based maintenance is more economical than time-

based maintenance [2,10,19]. A common CBM is to set  

a preventive maintenance threshold. Once it is inspected that the 

degradation amount reaches the threshold, maintenance 

measures are taken. The inspection is also divided into 

continuous monitoring and interval inspection. When the 

inspection cost is high and cannot be ignored when compared 

with the maintenance cost, or it is difficult to implement 

continuous monitoring, interval inspection is generally adopted. 

And the inspection interval sometimes becomes a decision 

variable of maintenance policy. At the same time, it is worth 

noting that some researchers have adopted different intervals in 

different phases when conducting condition-based maintenance. 

Some literature also concluded that different intervals can 

achieve better results than fixed detection intervals with cost 

savings [3,15-16,18].  

From the above, it can be seen that CBM provides a more 

flexible model for maintenance, and has proved its superiority 

in saving costs, so it has attracted many researchers into this 

field so far. At the same time, two-phase maintenance policies 

are also emerging. In the case of two-phase degradation, rational 

use of two-phase condition maintenance may produce good 

results. 

Therefore, this paper will propose a two-phase maintenance 
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policy for which the degradation can be seen as the two-phase 

Wiener process. Because the Wiener process can deal with 

general situations, whether the degradation is monotonous or 

not. The model-solving process taking the Wiener process as an 

example can also be applied to other stochastic processes, such 

as the gamma process. This paper’s contribution is provided a 

clear calculation equation for the maintenance costs and the 

proper optimization method under the above maintenance 

framework. The two-phase Wiener process mentioned in this 

paper is under the condition of a fixed change point degradation 

threshold while the change point of time will be variable, which 

means it will enter the next phase if the degradation amount 

exceeds this threshold. A reasonable degradation failure time 

distribution different from those in the existing literature is 

given. The method proposed in this paper can guide the 

maintenance decision of two-stage degraded components. The 

rest of this paper is organized as follows. The literature review 

will be introduced in Section 2 comparing the differences 

between this paper and existing papers. The two-phase Wiener 

process is introduced in Section 3. The maintenance policy is 

described and established in Section 4. The formulation and 

optimization are shown in Section 5. The feasibility and 

superiority of the model are illustrated with numerical examples 

in Section 6, followed by sensitivity analysis. The conclusion 

and prospect are made in Section 7. 

2. Literature review 

2.1. Two (Multi) -phase stochastic process 

Feng et al. [5] proposed a three-phase degradation model based 

on capacitance degradation of high-voltage pulse capacitors in 

2012 and gave a cumulative distribution function of a lifetime. 

The authors consider that the change point between different 

phases is fixed. At the same time, since the life distribution is 

not calculated as a whole, the cumulative distribution function 

of life is discontinuous or even not monotonically increasing. 

Yan et al. [30] conducted a similar two-phase study, which has 

the same shortcomings as the above literature. Besides the 

above literature, Wang et al. [23] and Wang et al. [24] all 

consider that the fault will occur in the first phase. Kong et al. 

[12] study the two-phase Wiener degradation process 

considering the sharp increase at change points, the expression 

of degradation quantity includes indicator function. The model 

is also extended to a multi-phase degradation process. When 

calculating the reliability function, the change point is 

considered a random variable. Wen et al. [28] proposed  

a multiple change-point Wiener degradation process 

considering unit heterogeneity. Updating the parameters of the 

posterior function through Bayesian methods. Because the 

residual life is calculated by phase iteration, the Monte Carlo 

simulation method is used while the uncertainty of parameters 

is considered.  

In this paper, a fixed phase-change threshold is considered 

that divides a degradation path into two phases. When the 

degradation amount exceeds the threshold, the degradation 

enters the second phase. Thus the time distribution of the phase-

change point can be obtained according to the fixed phase-

change threshold distinguish from the case above where the 

change point is fixed, or the change point is subject to a specific 

distribution independent of the degradation amount. Because 

the degradation can reflect the state of the components, it is 

more reasonable to distinguish the degradation phases by the 

degradation amount. As for the cumulative distribution function 

of life, the function curve is continuous in this paper and is not 

in the form of a piecewise function.  

2.2. Two-phase maintenance 

Some researchers have adopted a multi-phase maintenance 

strategy in their research on condition-based maintenance. Ni et 

al. [17] adopted the adaptive maintenance policy and time-

dependent maintenance policy, making maintenance strategies 

more economical by adopting different maintenance thresholds 

and inspection intervals. Naderkhani et al. [15] regard the 

detected state information as the covariate of the proportional 

risk model. Two different inspection intervals are used in the 

maintenance framework, and the results show that it has better 

performance than the fixed inspection interval and the age-

based strategy. Naderkhani and Makis [16] modeled the 

degradation process as a three-state continuous time 

homogeneous hidden Markov process with two unobservable 

operating states and one observable fault state. The decision 

variable includes two sampling intervals and two control 

thresholds. The optimization objective is to minimize the long-

term average maintenance cost per unit time of partially 

observable degraded systems. Under the framework of this 
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article, the sojourn time in each state follows an exponential 

distribution. Ponchet et al. [18] assessed a maintenance model 

for a multi-degradation mode system, the degradation process is 

considered to be the Gamma process. The degradation mode 

changes after a certain time point and can be inspected. The 

adapted rule sets different inspection intervals and preventive 

maintenance thresholds after the time point and is compared 

with the global rule. The Numerical examples show that better 

results can be achieved with the adaptive rule. Yan et al. [29] 

proposed a non-fixed periodic inspection strategy. Under the 

multi-phase degradation model proposed in the article, each 

phase is set with an inspection interval, and in the last phase, 

two inspection intervals are added by setting a threshold. It is 

believed that failure will be observed when the failure threshold 

is exceeded. In addition, a penalty cost is set for not being found 

in time during state transition. It is believed that failure will 

occur during all phases before the last phase with little 

probability.  

From the above literature, using different inspection 

intervals can achieve better results. However, it can also be seen 

that the maintenance policy is established under various 

degradation model assumptions, and the maintenance and 

inspection arrangements will also be slightly different. In this 

paper, a condition-based maintenance policy with two different 

inspection intervals for the two-phase Wiener degradation 

process is proposed.  

3. Two-phase Wiener process 

In many practical situations, the degradation of components has 

two different phases. This paper considers the two-phase 

Wiener process, the degradation rate of the two phases is 

different, and the degradation path is continuous. Let 𝑋 =

{𝑋(𝑡): 𝑡 ≥ 0}  be the degradation process. Fig. 1 presents  

a degradation path following a two-phase Wiener process. A 

fixed phase-change threshold 𝑋𝑃 divides a degradation path into 

two phases. The system is in the first phase when it is brand new. 

The degradation increases stochastically and will hit the 

threshold 𝑋𝑃. After that, the degradation goes into the second 

phase. The degradation rate in the second phase is different from 

that of the first phase. Once the degradation value exceeds  

a critical value 𝐷, the system is regarded to fail. 

 

 

Fig. 1. Two-phase degradation process. 

Assume 𝑋(0) = 0  for any system. The two-phase Wiener 

process is given as follows:  

 
𝑋(𝑡)

= {
𝜇1𝑡 + 𝜎1𝐵(𝑡), 0 < 𝑡 ≤ 𝑡𝑃

𝑋𝑃 + 𝜇2(𝑡 − 𝑡𝑃) + 𝜎2𝐵(𝑡 − 𝑡𝑃), 𝑡 > 𝑡𝑃
 

(1) 

where 𝑡𝑃 is the hitting time for the threshold 𝑋𝑃; 𝜇1, 𝜇2 are the 

drift parameters for the first phase and the second phase, 𝜎1, 𝜎2 

are the diffusion parameters for the first phase and the second 

phase; 𝐵(𝑡)~𝑁(0, 𝑡) is the standard Brownian motion. 

In each phase, the first passage time to a fixed increment 𝛥𝑥 

follows the inverse Gaussian distribution, i.e. 

 
𝑓𝑖(𝛥𝑡|𝛥𝑥) =

𝛥𝑥

𝜎𝑖√𝛥𝑡3
𝜑 (

𝛥𝑥 − 𝜇𝑖𝛥𝑡

𝜎𝑖√𝛥𝑡
) , 𝑖

= 1,2 

(2) 

where 𝜑(𝑥) is the probability density function of the standard 

normal distribution. 

Then the probability density function of 𝑡𝑃 is given by 

 𝑓1(𝑡𝑃|𝑋𝑃) =
𝑋𝑃

𝜎1√𝑡𝑃
3

𝜑 (
𝑋𝑃 − 𝜇1𝑡𝑃

𝜎1√𝑡𝑃

) (3) 

When the degradation value exceeds 𝐷, a failure occurs. The 

reliability function of the system can be calculated as follows: 

𝑅(𝑡) = Pr(𝑇 > 𝑡) = Pr(𝑋(𝑡) < 𝐷)                      

 = Pr(𝑋(𝑡) ≤ 𝑋𝑃) + Pr(𝑋𝑃 < 𝑋(𝑡) < 𝐷) (4) 

 

= ∫ 𝑓1(𝑢|𝑋𝑃)𝑑𝑢
∞

𝑡

+ ∫ 𝑓1(𝑢|𝑋𝑃)𝑑𝑢 ∫ 𝑓2(𝑣|𝐷 − 𝑋𝑃)
∞

𝑡−𝑢

𝑑𝑣
𝑡

0

 

 

where 𝑇 is the failure time. The reliability of the component is 

the sum of the probability of degradation in phase 1 and the 
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probability of degradation in stage 2 but not exceeding the 

degradation failure threshold.  

The reliability function is the basis of the calculation of the 

maintenance costs. 

4. Policy description 

If the degradation path follows the two-phase Wiener process, 

failure will only appear in the second phase. So at the beginning 

of the degradation, a less frequent inspection can be adopted to 

save costs. We consider a two-phase inspection scheme. Inspect 

the component at time 𝑡𝑖(𝑖 = 1,2, … ) . It is assumed the 

inspection is perfect and non-destructive. If the degradation is 

in the first phase, the time interval to the next inspection is 𝐼1. If 

the degradation is in the second phase and a decision is made to 

leave the system operating, the time interval to the next 

inspection is 𝐼2 . The inspection cost is 𝐶𝐼 . A preventive 

replacement threshold 𝜏 ∈ (𝑋𝑃 , 𝐷)  is set in the policy. At an 

inspection epoch, if the degradation value is less than 𝜏 , no 

replacement is taken; if the degradation value exceeds 𝜏 but is 

less than 𝐷 ( 𝜏 ≤ 𝑋(𝑡) < 𝐷 ), preventive replacement is 

performed; If the degradation value is larger than 𝐷, corrective 

replacement is performed. The replacement time is negligible. 

So degradation value will change to 0 instantly after 

replacement. The costs of the preventive replacement and 

corrective replacement are 𝐶𝑃 and 𝐶𝐶, respectively.  

The maintenance policy based on the degradation amount is 

concisely illustrated in Fig 2. 

 

Fig. 2. Description of the proposed maintenance policy. 

The objective is to minimize the long-run average cost per 

unit time by jointly optimizing 𝐼1, 𝐼2, and 𝜏. 

5. Formulation and optimization 

5.1. Formulation 

According to the renewal theory, the long-run cost rate can be 

expressed by the expected cost rate in one cycle. Cost items 

include maintenance costs and inspection costs. Then the long-

run cost rate can be expressed as 

 

lim
𝑡→∞

𝐶(𝑡)

𝑡
=

𝐸(𝐶𝑇)

𝐸(𝑇𝐿)

=
𝑃1𝐶𝑃 + 𝑃2𝐶𝑐 + 𝐸(𝑁)𝐶𝐼

𝐸(𝑇𝐿)
 

(5) 

where 𝐶(𝑡) is the cost at time 𝑡, 𝐶𝑇 is the cost in one cycle, 𝑇𝐿  

is the length of a cycle. 𝑃1  and 𝑃2  are the probability that the 

renewal cycle ends with preventive replacement or corrective 

replacement, respectively. 𝑁 is the inspection times in one cycle. 

When 𝜏 ≤ 𝑋(𝑡) < 𝐷 , a preventive replacement will be 

carried out at inspection point 𝑡. Accumulate the probability of 

implementing preventive maintenance at each inspection point, 

the probability that the renewal cycle ends with preventive 

replacement 𝑃1 can be calculated as follows: 

𝑃 1
 = ∫ 𝑓1(𝑢|𝑋𝑃)𝑑𝑢

∞

0

∬ 𝑓2(𝑦|𝜏 − 𝑋𝑃)𝑓2(𝑧|𝐷 − 𝜏)𝑑𝑦𝑑𝑧    

𝑢+𝑦≤𝑁1𝐼1
𝑢+𝑦+𝑧>𝑁1𝐼1

+ ∑ ∫ 𝑓1(𝑢|𝑋𝑃)𝑑𝑢
∞

0

∬ 𝑓2(𝑦|𝜏 − 𝑋𝑃)𝑓2(𝑧|𝐷 − 𝜏)𝑑𝑦𝑑𝑧

𝜑1

∞

𝑛2=1

 (6) 

 

where the first term in Equation (6) represents the probability of 

preventive replacement at the time 𝑁1𝐼1, and the second term 

represents the probability of preventive replacement at the time 

𝑁1𝐼1 + 𝑛2𝐼2(𝑛2 = 1,2, … ); 𝑁1 indicates the number of times of 

inspection with 𝐼1  as the inspection interval, its calculation 

method will be explained later; 𝜑1: {𝑁1𝐼1 + (𝑛2 − 1)𝐼2 < 𝑢 +

𝑦 ≤ 𝑁1𝐼1 + 𝑛2𝐼2, 𝑢 + 𝑦 + 𝑧 > 𝑁1𝐼1 + 𝑛2𝐼2},𝑢 + 𝑦 indicates the 

time when the degradation amount reach the preventive 

replacement threshold 𝜏 , while 𝑢 + 𝑦 + 𝑧  indicates the time 

when the degradation amount reach the failure threshold 𝐷, 𝜑1 

is equivalent to the condition that {𝑋(𝑁1𝐼1 + (𝑛2 − 1)𝐼2) < 𝜏,

𝜏 ≤ 𝑋(𝑁1𝐼1 + 𝑛2𝐼2) < 𝐷} , representing that no maintenance 

action was carried out at the previous inspection point, and 

preventive maintenance was carried out at this inspection point.  

When preventive maintenance was not performed at the 

previous inspection point 𝑡𝑖−1, at the same time the degradation 

amount exceeds the failure threshold 𝐷  ( 𝑋(𝑡𝑖) ≥ 𝐷 ), then  

a corrective replacement will be implemented at inspection 

point 𝑡𝑖 . The probability that the renewal cycle ends with 

corrective replacement 𝑃2 can be calculated as follows: 
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𝑃 2
 
= ∬ 𝑓1(𝑢|𝑋𝑃)𝑓2(𝑣|𝐷 − 𝑋𝑃)𝑑𝑢𝑑𝑣

𝑢+𝑣≤𝑁1𝐼1

+ ∑ ∫ 𝑓1(𝑢|𝑋𝑃)𝑑𝑢
∞

0

∬ 𝑓2(𝑦|𝜏 − 𝑋𝑃)𝑓2(𝑧|𝐷 − 𝜏)𝑑𝑦𝑑𝑧

𝜑2

∞

𝑛2=1

 (7) 

where the first term in Equation (7) represents the probability of 

corrective replacement at the time 𝑁1𝐼1 , and the second term 

represents the probability of corrective replacement at the time 

𝑁1𝐼1 + 𝑛2𝐼2(𝑛2 = 1,2, … ) ; 𝜑2: {𝑢 + 𝑦 > 𝑁1𝐼1 + (𝑛2 −

1)𝐼2, 𝑢 + 𝑦 + 𝑧 ≤ 𝑁1𝐼1 + 𝑛2𝐼2}  is equivalent to the condition 

that {𝑋(𝑁1𝐼1 + (𝑛2 − 1)𝐼2) < 𝜏, 𝑋(𝑁1𝐼1 + 𝑛2𝐼2) ≥ 𝐷}. 

According to the probability that the cycle ends at a specific 

time, the expected number of inspections and the length of the 

renewal cycle can be calculated as follows: 

The expected number of inspections in one cycle is 

𝐸(𝑁) = ∫ 𝑁1𝑓1(𝑢|𝑋𝑃)𝑑𝑢
∞

0

∬ 𝑓2(𝑦|𝜏 − 𝑋𝑃)𝑓2(𝑧|𝐷 − 𝜏)𝑑𝑦𝑑𝑧

𝑢+𝑦≤𝑁1𝐼1
𝑢+𝑦+𝑧>𝑁1𝐼1

       

+ ∬ 𝑁1𝑓1(𝑢|𝑋𝑃)𝑓2(𝑣|𝐷 − 𝑋𝑃)𝑑𝑢𝑑𝑣

𝑢+𝑣≤𝑁1𝐼1

                      

+ ∑ ∫ (𝑁1 + 𝑛2)𝑓1(𝑢|𝑋𝑃)𝑑𝑢
∞

0

∬ 𝑓2(𝑦|𝜏 − 𝑋𝑃)𝑓2(𝑧|𝐷 − 𝜏)𝑑𝑦𝑑𝑧

𝜑1

∞

𝑛2=1

+ ∑ ∫ (𝑁1 + 𝑛2)𝑓1(𝑢|𝑋𝑃)𝑑𝑢
∞

0

∬ 𝑓2(𝑦|𝜏 − 𝑋𝑃)𝑓2(𝑧|𝐷 − 𝜏)𝑑𝑦𝑑𝑧

𝜑2

∞

𝑛2=1

 (8) 

when replacement is implemented at time 𝑁1𝐼1, the number of 

inspections that have been implemented is 𝑁1. The number of 

inspections when replacement is implemented at time 𝑁1𝐼1 +

𝑛2𝐼2 is 𝑁1 + 𝑛2. Equation (8) evolved from Equation (6) -(7) to 

obtain the expected number of inspections within a cycle. 

Multiplied the time and the probability that the cycle ends at 

a certain time, the expected length of the renewal cycle can be 

gotten as 

𝐸(𝑇) = ∫ 𝑁1𝐼1𝑓1(𝑢|𝑋𝑃)𝑑𝑢
∞

0

∬ 𝑓2(𝑦|𝜏 − 𝑋𝑃)𝑓2(𝑧|𝐷 − 𝜏)𝑑𝑦𝑑𝑧

𝑢+𝑦≤𝑁1𝐼1
𝑢+𝑦+𝑧>𝑁1𝐼1

+ ∬ 𝑁1𝐼1𝑓1(𝑢|𝑋𝑃)𝑓2(𝑣|𝐷 − 𝑋𝑃)𝑑𝑢𝑑𝑣

𝑢+𝑣≤𝑁1𝐼1

               

+ ∑ ∫ (𝑁1𝐼1 + 𝑛2𝐼2)𝑓1(𝑢|𝑋𝑃)𝑑𝑢
∞

0

∬ 𝑓2(𝑦|𝜏 − 𝑋𝑃)𝑓2(𝑧|𝐷 − 𝜏)𝑑𝑦𝑑𝑧

𝜑1

∞

𝑛2=1

+ ∑ ∫ (𝑁1𝐼1 + 𝑛2𝐼2)𝑓1(𝑢|𝑋𝑃)𝑑𝑢
∞

0

∬ 𝑓2(𝑦|𝜏 − 𝑋𝑃)𝑓2(𝑧|𝐷 − 𝜏)𝑑𝑦𝑑𝑧

𝜑2

∞

𝑛2=1

 (9) 

Substituting Equations (6) - (9) into Equation (5) can obtain 

the expression of the long-run average cost per unit time.  

Availability is defined as the proportion of the normal 

working time of the system’s total working time. In this paper, 

when the degradation amount is less than the failure threshold 

𝐷 , it is considered normal operation; when the degradation 

amount is greater than the failure threshold 𝐷, it is considered 

abnormal operation time. Therefore, the calculation equation of 

availability is 

 𝐴𝐶 =
𝐸(𝑇𝐴)

𝐸(𝑇)
 (10) 

where 

𝐸(𝑇𝐴) 
= ∫ 𝑁1𝐼1𝑓1(𝑢|𝑋𝑃)𝑑𝑢

∞

0

∬ 𝑓2(𝑦|𝜏 − 𝑋𝑃)𝑓2(𝑧|𝐷 − 𝜏)𝑑𝑦𝑑𝑧

𝑢+𝑦≤𝑁1𝐼1
𝑢+𝑦+𝑧>𝑁1𝐼1

+ ∬ (𝑢 + 𝑣)𝑓1(𝑢|𝑋𝑃)𝑓2(𝑣|𝐷 − 𝑋𝑃)𝑑𝑢𝑑𝑣

𝑢+𝑣≤𝑁1𝐼1

               

+ ∑ ∫ (𝑁1𝐼1 + 𝑛2𝐼2)𝑓1(𝑢|𝑋𝑃)𝑑𝑢
∞

0

∬ 𝑓2(𝑦|𝜏 − 𝑋𝑃)𝑓2(𝑧|𝐷 − 𝜏)𝑑𝑦𝑑𝑧

𝜑1

∞

𝑛2=1

+ ∑ ∫ (𝑥 + 𝑦 + 𝑧)𝑓1(𝑢|𝑋𝑃)𝑑𝑢
∞

0

∬ 𝑓2(𝑦|𝜏 − 𝑋𝑃)𝑓2(𝑧|𝐷 − 𝜏)𝑑𝑦𝑑𝑧

𝜑2

∞

𝑛2=1

 (11) 

Replace the time of the inspection point in the case of 

corrective replacement in Equation (9) with the time of reaching 

the failure threshold 𝐷 to obtain Equation (11).  

5.2. Optimization 

While calculating the long-run average cost per unit of time, 

there are several problems we have to face. First of all, the 

integration domain is discrete. It is needed to add up the integral 

value of multiple domains. At the same time, we need to define 

the value of 𝑁1. Therefore, in this section, we will first discuss 

how to calculate the cost equation given above. After that, we 

need to find a proper optimization solution method to get the 

optimal solution.  

The approximate calculation method proposed in this paper 

is converting the change point 𝑡𝑃 to a constant value, then the 

calculation of 𝑁1  will be easier. Calculate the cost and cycle 

when 𝑡𝑃 takes different values, and then add them up according 

to the corresponding probability. Since there are slight 

differences between the calculation equation in 4.1, we put the 

approximate calculation method in Appendix A. 

As for the maintenance policy we considered, we wish to 

find a policy that is economical enough. And it is acceptable 

when a solution is easily obtained and close to the optimal 

solution. So adopting the intelligence algorithm to find an 

approximate optimal solution is a good idea. When finding the 

proper optimization method, Particle Swarm Optimization 

(PSO) attracts our attention. Particle Swarm Optimization is  

a global optimization swarm intelligence algorithm inspired by 

bird flock foraging behavior, first proposed by Kennedy and 

Eberhart in 1995 [31]. PSO encodes the solution with real 
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numbers, which has high solution efficiency and fast 

convergence speed. Through the continuous movement of the 

particles, the approximate optimal solution is finally obtained. 

Each particle’s moving direction and speed are decided by both 

the optimal solution of its own and the global optimal solution 

so far. The two optimal solutions represent individual 

information and group information respectively. The 

approximate optimal solution is finally found through the 

generational search. 

The process of PSO is shown as follows: 

(1)Set the particle swarm optimization algorithm parameters. 

Parameters include search space, that is, the lower and upper 

limits of each variable 𝐿  and 𝑈 ; population size 𝑧 ; learning 

factors 𝑐1, 𝑐2; stall generations 𝐻; iteration accuracy 𝜉. 

(2)Randomly obtain the position 𝑥  and velocity 𝑣  of the 

initial search point, Calculate the fitness value of the initial 

search point to initialize the optimal position of the individual 

and the optimal position of the group. 

(3) Particle migration 

Update the positions of the particles according to Equation 

(12). The velocity of the particles at the next iteration is related 

to the original velocity, individual optimal value, and global 

optimal value. 

 
𝑥𝑖

𝑡+1 = 𝑥𝑖
𝑡 + 𝑣𝑖

𝑡+1

𝑣𝑖
𝑡+1 = 𝑤𝑣𝑖

𝑡 + 𝑐1𝑟1(𝑝𝑖
𝑡 − 𝑥𝑖

𝑡) + 𝑐2𝑟2(𝑝𝑔
𝑡 − 𝑥𝑖

𝑡)
 (12) 

where 𝑥𝑖
𝑡 is the position of the 𝑖 th particle 

      𝑣𝑖
𝑡  is the velocity of the 𝑖 th particle 

      𝑤 is the inertia weight 

      𝑐1, 𝑐2 are the learning factors 

      𝑟1, 𝑟2 are random numbers uniformly distributed in the 

interval [0, 1] 

𝑝𝑖
𝑡 is the current best position of the 𝑖th particle at the 𝑡th 

iteration 

𝑝𝑔
𝑡  is the current global best position at the 𝑡th iteration 

(4) Calculate the fitness value of the updated particles, and 

update the individual best position and the global best position 

(5) Determine whether the stop condition is reached. If the 

current iteration number reaches the preset maximum number, 

or the fitness value in 𝐻 consecutive generations is less than the 

predetermined convergence accuracy 𝜉, the iteration is stopped 

and the optimal solution is output, otherwise, go to step (2). 

The flow chart of the Particle Swarm Optimization 

Algorithm is shown in Fig 3. 

 

Fig. 3. Particle Swarm Optimization flow chart. 

6. Numerical example 

6.1. Results and comparison 

The feasibility of this two-phase maintenance model is 

demonstrated based on the degradation data of the fluid 

coupling mentioned in the literature. Fluid couplings are 

coupling devices with liquid being the medium. The common 

failure of the fluid coupling is that the passage is blocked or the 

oil temperature is too high. The failure of the hydraulic coupling 

will affect the normal operation of the equipment and result in 

a loss of efficiency. Therefore, inspection and timely 

maintenance can avoid system failures which will cause further 

economic losses. As in the research literature[30], its 

degradation path follows a two-phase Wiener process, and the 

parameters are 𝜇1 = 0.2112, 𝜎1
2 = 0.2084, 𝜇2 = 0.009, 

𝜎2
2 = 0.0009, 𝐷 = 29.5mm, 𝑋𝑃 = 15.3mm. In this part, 

maintenance cost parameters are set as 𝐶𝐼 = 10, 𝐶𝑃 = 400, 

𝐶𝑐 =1000. 

Particleswarm function of MATLAB software is adopted to 

accomplish the optimization. Related parameters according to 
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the pre-runs are set as particle value’s lower limit 

𝐿 = [0.01,0.01,15.3]; particle value’s upper limit 

𝑈 =[2500,500,29.5]; population size 𝑧 =20. The stop condition 

is that fitness value improvement is less than 𝜉 =  5× 10-5 in 

𝐻 = 15 iterations. Particleswarm function runs 5 times. Each 

operation obtains the best value of 0.2825. The convergence 

curve of the optimal fitness value within multiple operations is 

shown in Fig 4, and the final solution obtained by each 

operation is shown in Table 1. 

 

Fig. 4. Convergence curve of operations. 

Table 1. The results of each operation. 

Operation 𝐼1 𝐼2 𝜏 Iterations Time/hours 
Best 

Value 
Availability 

1 1342.5 118.1 27.9 37 2.3 0.2825 0.9998 

2 1343.8 117.8 27.9 34 2.1 0.2825 0.9998 

3 1343.5 118.4 27.9 43 2.6 0.2825 0.9998 

4 1343.6 117.9 27.9 50 3.1 0.2825 0.9998 

5 1343.5 118.1 27.9 43 2.6 0.2825 0.9998 

average 1343.4 118.1 27.9 41.4 2.5 0.2825 0.9998 

According to the multiple operations, it can be presumed 

that the particle swarm optimization algorithm can be used to 

obtain the approximate optimal solution stably. As for the first 

operation, the long-run average cost per unit time is 0.2825, 

availability is 0.9998, time intervals to the next inspection in the 

first and the second phase are 1342.5,118.1 respectively, and the 

preventive-replacement threshold τ is 27.9mm. The average 

number of iterations over 5 runs is 41.4. It takes nearly two and 

a half hours when using the Intel Core i5-9400F CPU @2.9GHz. 

The final solution and the needed time are satisfactory.  

The two-phase maintenance policy is compared with the 

maintenance policy of a single inspection cycle. The 

optimization results are shown in Table 2. The long-run average 

cost per unit time is 0.3135 when a fixed inspection interval in 

the whole cycle is adopted, and the availability is 0.9996. In this 

situation, the time interval to the next inspection is 476.6 and 

the preventive-replacement threshold is 24.7. It can be seen that 

the two-phase maintenance policy carries out infrequent 

inspections in the initial phase, while frequent inspections in the 

later phase can save costs. Under the cost parameters set in this 

manuscript, the cost of two-phase inspection condition-based 

maintenance can be reduced by 10% and the availability 

increased by 0.02% compared with the periodic inspection 

condition-based maintenance.  

Table 2. The results of fixed inspection interval. 

𝐼 𝜏 Best Value Availability 

476.6 24.7 0.3135 0.9996 

Next, we will compare the results obtained with the 

traditional periodic maintenance model which was usually 

called time-based maintenance(TBM). In the case of time-based 

maintenance, components will be replaced periodically. The 

average maintenance cost per unit time under TBM is as follows: 

 

lim
𝑡→∞

𝐶(𝑡)

𝑡
=

𝐸(𝐶𝑇)

𝐸(𝑇𝑟)

=
𝑅(𝑇𝑟)𝐶𝑃 + 𝑅(𝑇𝑟)̅̅ ̅̅ ̅̅ ̅𝐶𝑐 + 𝐶𝐼

𝑇𝑟

 

(13) 

where 𝑇𝑟  is the replacement interval under the time-based 

maintenance. 𝑅(𝑡)̅̅ ̅̅ ̅̅ = 𝐹(𝑡) = 1 − 𝑅(𝑡) is the CDF of the failure 

time. An inspection will be performed at the replacement point 

𝑇𝑟 to determine whether a preventive or corrective replacement 

is required.  

The availability under TBM is as follows: 

 𝐴𝐶 =
∫ 𝑡𝐹′(𝑡)𝑑𝑡

𝑇𝑟

0

𝑇𝑟 ∫ 𝐹′(𝑡)𝑑𝑡
𝑇𝑟

0

 (14) 

Similarly, the maintenance cost per unit time is taken as the 

fitness value, and the replacement cycle is taken as the decision 

variable, using the PSO algorithm to solve this problem. The 

results are shown in Table 3. The optimal replacement interval 

is 1401.4, the average cost per unit time is 0.303, and the 

availability is 0.9871. The two-phase maintenance in this paper 

can save 7% on cost and increase by 1.3% availability compared 

with time-based maintenance. 

As can be seen from the above, adopting the two-phase 

maintenance policy described in this article has advantages in 

cost saving and improving availability. The cost and availability 

comparison of the three policies is shown in Table 4. The two-

phase maintenance policy reduces costs by reducing inspection 
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frequency in the first phase and timely grasping the equipment 

degradation state in the second phase to arrange reasonable 

maintenance to avoid equipment failure and generate more costs. 

Table 3. The results of TBM. 

𝑇𝑟 Best Value Availability 

1401.4 0.303 0.9871 

Table 4. Comparison between different policies. 

Policy Cost Availability 

Two-phase maintenance 0.2825 0.9998 

Periodic CBM 0.3135 0.9996 

TBM 0.303 0.9871 

6.2 Sensitivity analysis 

To further verify the correctness of the model and explore the 

impact of each cost parameter on the maintenance decision,  

a sensitivity analysis is conducted in this section. 

Set the preventive replacement costs 𝐶𝑃 and the corrective 

replacement costs 𝐶𝐶  as 400, 1000 respectively, and the 

inspection cost 𝐶𝐼  as 2, 10, and 50 in turn. Then run the 

optimizer to see the influence on the policy. The final result is 

shown in Table 5 as follows. 

Table 5. Optimization results of different inspection costs. 

𝐶𝐼 𝐶𝑃 𝐶𝐶 𝐼1 𝐼2 𝜏 Average cost 

2 400 1000 1307.7 51.8 28.6 0.2638 

10 400 1000 1342.5 118.1 27.9 0.2825 

50 400 1000 1390.1 242 26.6 0.3272 

As the inspection cost increases, the time intervals to the 

next inspection in the first phase will slowly increase, while the 

time intervals to the next inspection in the second phase will 

significantly increase and the preventive-replacement threshold 

will decrease. 

Then let the inspection cost 𝐶𝐼 remain the same, and change 

the ratio of 𝐶𝐶/𝐶𝑃 . The final result is shown in Table 6 as 

follows. 

Table 6. Optimization results of different 𝐶𝐶/𝐶𝑃. 

𝐶𝐼 𝐶𝑃 𝐶𝐶 𝐼1 𝐼2 𝜏 Average cost 

10 400 1000 1342.5 118.1 27.9 0.2825 

10 400 4000 1271.9 116.4 27.7 0.2892 

10 400 10000 1240.1 117 27.5 0.2923 

When the ratio of 𝐶𝐶/𝐶𝑃 increases, it can be seen that the 

time intervals to the next inspection in the first phase will slowly 

decrease, the time intervals to the next inspection in the second 

phase will slightly fluctuate, and the preventive-replacement 

threshold will decrease. 

From the above analysis, it can be seen that when the cost of 

inspection increases, the frequency of the inspection in the 

second phase will become lower, and the preventive-

replacement threshold will decrease, which means equipment 

will be replaced in advance to accommodate less frequent 

inspection. Likewise, when the ratio of 𝐶𝐶/𝐶𝑃 increases, it also 

causes equipment to be replaced earlier. 

7. Conclusions 

This paper proposes a two-phase degradation component 

maintenance policy for the two-phase degradation phenomenon. 

For the two-phase Wiener process, the established maintenance 

policy model optimizes the two-phase inspection interval and 

the preventive-replacement threshold at the same time. The 

optimization goal is to minimize the long-run average cost per 

unit time. The particle swarm optimization algorithm is used to 

solve the maintenance policy model. The two-phase 

degradation data of a hydraulic coupler demonstrates the 

feasibility of the maintenance policy model. Compared with the 

single inspection interval policy and TBM policy, it can save 

costs and increase availability. Under the parameter settings in 

this article, compared with a single fixed cycle inspection 

condition-based maintenance policy, it can reduce costs by 10% 

and improve availability by 0.02%. Compared with the time-

based maintenance policy, it can save 7% in cost and improve 

availability by 1.3%. Therefore, in practice, for situations where 

the degradation process involves two phases and the component 

state can be expressed using a single feature quantity, the two-

phase maintenance policy described in this article can be 

adopted to reduce costs and improve availability. The Particle 

Swarm Optimization algorithm can effectively solve the 

maintenance model. And sensitive analysis shows when the cost 

of inspection increases, the frequency of the inspection will 

become lower, and the equipment will be replaced in advance. 

Likewise, when the ratio of 𝐶𝐶/𝐶𝑃  increases, it also causes 

equipment to be replaced earlier. 

Subsequent research can be extended based on this article. 

For condition-based maintenance, it is possible in further to 

collect more data information and analyze the data through 

intelligent methods such as artificial neural networks. In terms 

of maintenance policy, more flexible arrangements can also be 

attempted. For example, a more flexible inspection policy or 
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taking into account the impact of different maintenance actions on equipment state. 

Appendix 

 lim
𝑡→∞

𝐶(𝑡)

𝑡
≈

𝑃1
′𝐶𝑃 + 𝑃2

′𝐶𝑐 + 𝐸(𝑁)′𝐶𝐼

𝐸(𝑇𝐿)′
 (15) 

where 𝑃1
′, 𝑃2

′ , 𝐸(𝑁)′, 𝐸(𝑇𝐿)′ can be expressed as follows: 

 

𝑃1
′ = ∑ 𝑓1(𝑢𝑖|𝑋𝑃)

𝑀

𝑖=1

∆𝑢 ∬ 𝑓2(𝑦|𝜏 − 𝑋𝑃)𝑓2(𝑧|𝐷 − 𝜏)𝑑𝑦𝑑𝑧

𝑢𝑖+𝑦≤𝑁1
𝑖 𝐼1

𝑢𝑖+𝑦+𝑧>𝑁1
𝑖 𝐼1

     

+ ∑ 𝑓1(𝑢𝑖|𝑋𝑃)∆𝑢 ∑ ∬ 𝑓2(𝑦|𝜏 − 𝑋𝑃)𝑓2(𝑧|𝐷 − 𝜏)𝑑𝑦𝑑𝑧

𝜑1
′

∞

𝑛2=1

M

𝑖=1

      

 (16) 

M is a number that is large enough for the approximate calculation.𝑢1 = 𝛿, 𝑢𝑖+1 − 𝑢𝑖 = ∆𝑢, 𝛿, ∆𝑢  are small numbers selected 

according to the calculation accuracy.𝑁1
𝑖 = ⌈

𝑢𝑖

𝐼1
⌉,.⌈𝑎⌉ means rounding up 𝑎, 𝜑1

′ : {𝑁1
𝑖𝐼1 + (𝑛2 − 1)𝐼2 < 𝑢𝑖 + 𝑦 ≤ 𝑁1

𝑖𝐼1 + 𝑛2𝐼2, 𝑢𝑖 + 𝑦 +

𝑧 > 𝑁1
𝑖𝐼1 + 𝑛2𝐼2} 

 

𝑃2
′ = ∑ 𝑓1(𝑢𝑖|𝑋𝑃)

M

𝑖=1

∆𝑢 ∫ 𝑓2(𝑣|𝐷 − 𝑋𝑃)
𝑁1

𝑖 𝐼1−𝑢𝑖

0

𝑑𝑣                

+ ∑ 𝑓1(𝑢𝑖|𝑋𝑃)∆𝑢

M

𝑖=1

∑ ∬ 𝑓2(𝑦|𝜏 − 𝑋𝑃)𝑓2(𝑧|𝐷 − 𝜏)𝑑𝑦𝑑𝑧

𝜑2
′

∞

𝑛2=1

   

 (17) 

where 𝜑2
′ : {𝑢𝑖 + 𝑦 > 𝑁1

𝑖𝐼1 + (𝑛2 − 1)𝐼2, 𝑢𝑖 + 𝑦 + 𝑧 ≤ 𝑁1
𝑖𝐼1 + 𝑛2𝐼2} 

 

 

 

𝐸(𝑁)′ = ∑ 𝑁1
𝑖𝑓1(𝑢𝑖|𝑋𝑃)

M

𝑖=1

∆𝑢 ∬ 𝑓2(𝑦|𝜏 − 𝑋𝑃)𝑓2(𝑧|𝐷 − 𝜏)𝑑𝑦𝑑𝑧   

𝑢𝑖+𝑦≤𝑁1
𝑖 𝐼1

𝑢𝑖+𝑦+𝑧>𝑁1
𝑖 𝐼1

+ ∑ 𝑁1
𝑖𝑓1(𝑢𝑖|𝑋𝑃)

M

𝑖=1

∆𝑢 ∫ 𝑓2(𝑣|𝐷 − 𝑋𝑃)
𝑁1

𝑖 𝐼1−𝑢𝑖

0

𝑑𝑣

+ ∑ 𝑓1(𝑢𝑖|𝑋𝑃)∆𝑢 ∑ (𝑁1
𝑖 + 𝑛2) ∬ 𝑓2(𝑦|𝜏 − 𝑋𝑃)𝑓2(𝑧|𝐷 − 𝜏)𝑑𝑦𝑑𝑧

𝜑1
′

∞

𝑛2=1

M

𝑖=1

+ ∑ 𝑓1(𝑢𝑖|𝑋𝑃)∆𝑢

M

𝑖=1

∑ (𝑁1
𝑖 + 𝑛2) ∬ 𝑓2(𝑦|𝜏 − 𝑋𝑃)𝑓2(𝑧|𝐷 − 𝜏)𝑑𝑦𝑑𝑧

𝜑2
′

∞

𝑛2=1
           

 (18) 

 

 

𝐸(𝑇)′ = ∑ 𝑁1
𝑖𝐼1𝑓1(𝑢𝑖|𝑋𝑃)

M

𝑖=1

∆𝑢 ∬ 𝑓2(𝑦|𝜏 − 𝑋𝑃)𝑓2(𝑧|𝐷 − 𝜏)𝑑𝑦𝑑𝑧

𝑢𝑖+𝑦≤𝑁1
′ 𝐼1

𝑢𝑖+𝑦+𝑧>𝑁1
′ 𝐼1

+ ∑ 𝑁1
𝑖𝐼1𝑓1(𝑢𝑖|𝑋𝑃)

M

𝑖=1

∆𝑥 ∫ 𝑓2(𝑣|𝐷 − 𝑋𝑃)
𝑁1

𝑖 𝐼1−𝑢𝑖

0

𝑑𝑣

+ ∑ 𝑓1(𝑢𝑖|𝑋𝑃)∆𝑢

M

𝑖=1

∑ (𝑁1
𝑖𝐼1 + 𝑛2𝐼2) ∬ 𝑓2(𝑦|𝜏 − 𝑋𝑃)𝑓2(𝑧|𝐷 − 𝜏)𝑑𝑦𝑑𝑧

𝜑1
′

∞

𝑛2=1

+ ∑ 𝑓1(𝑢𝑖|𝑋𝑃)∆𝑢

M

𝑖=1

∑ (𝑁1
𝑖𝐼1 + 𝑛2𝐼2) ∬ 𝑓2(𝑦|𝜏 − 𝑋𝑃)𝑓2(𝑧|𝐷 − 𝜏)𝑑𝑦𝑑𝑧

𝜑2
′

∞

𝑛2=1

 (19) 
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